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Abstract— The paper devises a beta neutral strategy for building a portfolio that is not exposed to market risk by implementing long short equity strate-
gy using ranking for a selected basket of stocks.The portfolio so created has a weighted beta value of 0 indicating no correlation with the capital markets 
thus ensuring its risk free nature.  
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1.INTRODUCTION                                                                     

ccording to Modern Portfolio Theory (MPT), the capital 
markets and securities exhibit correlation and securities 

with positive correlation exhibit beta value of 1 and securities 
that are negatively correlation exhibit a beta value of -1 and a 
beta value of 0 is assigned to a security that has no correlation 
with the market.  
Beta neutral portfolios consist of securities which are have a 
weighted average beta value 0, thus the portfolio has no mar-
ket exposure. Strategies of these kind are implemented by 
hedge funds so as to generate profit without being exposed to 
market risk.  
The paper deals with a β Neutral Long-Short Equity Strategy 
using Ranking wherein trades are entered both in long and 
short positions simultaneously in the market. The strategy has 
a weighted average beta of 0. In this strategy a basket of secu-
rities is selected and then the securities are ranked to identify 
which securities are relatively cheap(under valued) and ex-
pensive(over valued). It then goes long (buys) for top n equi-
ties/securities based on the ranking, and short (sells) the bot-
tom n for equal amounts of money.  

 
2. Strategy and Mathematical Analysis  
Trades are entered both in long and short positions simultane-
ously in the market. The strategy has a weighted average beta 
of 0.  
A basket of securities is initially selected where in the securi-
ties will then be ranked to identify which securities are rela-
tively cheap (under valued) and expensive (overvalued). It 
will then go long (buys) the top n equities/securities based on 
the ranking, and short (sells) the bottom n for equal amounts 
of money.  
 
Total value of long position = Total value of short position  
 
The strategy is also statistically robust since by ranking securi-
ties and entering multiple positions, one is making many bets 
on the ranking model rather than just a few risky bets.  
A ranking scheme is any model that can assign each security a 
number based on how they are expected to perform. Examples 

could be value factors, technical indicators, pricing models, or 
a combination of all of the above. For example, a momentum 
indicator can be used to give a ranking to a basket of trend 
following securities: securities with highest momentum are 
expected to continue to do well and get the highest ranks; se-
curities with lowest momentum will perform the worst and 
get lowest ranks.  
Upon determining the ranking scheme, profits are likely to be 
generated from the same. This is done by investing an equal 
amount of money into buying securities at the top of the rank-
ing, and selling securities at the bottom. This ensures that the 
strategy will make money proportionally to the quality of the 
ranking only, and will be market neutral.  
 
Let’s assume m equities/securities have been ranked, and n 
dollars are to be invested, and total holding position is of 2p 
positions (where m > 2p ). If the security at rank 1 is expected 
to perform the worst and security at rank m is expected to per-
form the best,then: 
  
One takes the securities in position 1,…p in the ranking, sell 
n/2p dollars worth of each security  
For each security in position m−,…m in the ranking, buy n/2p 
dollars worth of each security  
 
Friction Because of Prices will exist as security prices will not 
always divide n/2p evenly, and securities must be bought in 
integer amounts, there will be some imprecision and the algo-
rithm should get as close as it can to this number.  
 
For a strategy running with n=100000 and p=500, we see that  
n/2p=100000/1000 =100  
 

This will cause big problems for securities with prices > 100 
since fractional securities cannot be purchased or sold.This is 
alleviated by trading fewer equities i.e by flooring(floor func-
tion) on the capital invested in trading or increasing the capital 
I.e using leverage. 
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Strategy testing on hypothetical data set  
A random factor is used to rank the random generated 
stock/securities names. Let’s assume our future returns are 
dependent on these factor values.The strategy was tested on 
hypothetical security data generated using python:  
 
import numpy as np  
import statsmodels.api as sm  
import scipy.stats as stats import scipy  
import matplotlib.pyplot as plt  
import seaborn as sns  
import pandas as pd  
## PROBLEM SETUP ##  
# Generate securities and a random factor val-
ue for them  
security_names = ['security ' + str(x) for x 
in range(10000)] current_factor_values = 
np.random.normal(0, 1, 10000)  
# Generate future returns for these are de-
pendent on our factor values  
future_returns = current_factor_values + 
np.random.normal(0, 1, 10000)  
# Put both the factor values and returns into 
one dataframe  
data = pd.DataFrame(index = security_names, 
columns=['Factor Value','Returns'])  
data['Factor Value'] = current_factor_values 
data['Returns'] = future_returns  
# Take a look data.head(10)  

 
 
The equities are ranked according the their corresponding 
factor values and then trading positions are taken as per the 
strategy.The hypothetical security data so generated was then 
ranked using the following python code:  
 
# Rank securities  
ranked_data = data.sort_values('Factor Value')  
# Compute the returns of each basket with a 
basket size 500, so total (10000/500) baskets 
number_of_baskets = int(10000/500) bas-
ket_returns = np.zeros(number_of_baskets)  
for i in range(number_of_baskets):  

start = i * 500 end = i * 500 + 500 bas-
ket_returns[i] = 
ranked_data[start:end]['Returns'].mean() 
# Plot the returns of each basket 
plt.figure(figsize=(15,7)) 
plt.bar(range(number_of_baskets), bas-
ket_returns)  
plt.ylabel('Returns') plt.xlabel('Basket')  
plt.legend(['Returns of Each Basket']) 
plt.show()  

3. Results  
The results so obtained from investment as per the strategy 
devised was computed using the following python code:  
 
basket_returns[number_of_baskets-1] - bas-
ket_returns[0]  
 
The returns of the this strategy upon testing with hypothetical 
data was found out to be 4.172 

.  
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